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ABSTRACT

Here we present the results of an analytical and numerical study of the Coulomb interaction problem in one of the standard models of a higher-order topological superconductor (HOTSC) [1,2]. The attention is paid to both limiting cases: weak and
strong charge correlations [3]. In the first situation, it is shown that the boundaries of the topologically nontrivial phase are extended due to the many-body interaction. For a system with open boundary conditions, a crossover of the ground state was
found. If the repulsion intensity is lower than the critical, the charge density distribution has C4 symmetry and does not depend on spin, and the energy of the Majorana corner state is determined by the overlap of the wave functions localized in
different corners. After the crossover, the concentration correlator depends on the spin projection and has a spontaneously broken symmetry. In turn, the energy of the corner state ceases to depend on the system size. The dependence of this
crossover on the shape of the boundary of the 2D system is discussed. The possibility to realize the Majorana corner states in the limit of the infinitely strong repulsion is demonstrated based on the analysis of the Dirac mass of edge Hubbard
fermions. It is shown that the boundaries of the topologically nontrivial phase become strongly renormalized due to the Hubbard corrections.

MODEL OF HOTSC WITH ELECTRON CORRELATIONS

Recently, the minimal model of HOTSC describing a 2D topological insulator (transition-metal dichalcogenides and rocksalt
IV-VI semiconductors XY (X = Ge, Sn, Pb and Y = S, Se, Te) [4, 5]) proximitized by an s±-wave superconductor was
proposed [1].

Figure 1: Left: Schematics of HOTSC. Middle: Band structure of a 2D ribbon of topological insulator with [(b), (d)] and without
[(a), (c)] superconductivity. Right: The energy spectrum and density plot for a 2D lattice. The results and figures from [1].

The model of HOTSC with Hubbard repulsion.
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where cfA(B)σ annihilates an electron with a spin σ on an Ath (Bth) orbital at the square lattice site f . An on-site energy
shift ∆ε relative to a chemical potential µ has opposite sign for the different orbitals. The intraorbital nearest-neighbor tx,y
hopping parameter has the same property and tx = −ty . The parameter α defines an intensity of the interorbital Rashba
spin-orbit coupling. The parameters ∆0,1 are intensities of the intraorbital on-site and intersite singlet pairing that results in
overall s±-superconductivity. U is a strength of the intraorbital Coulomb interaction.
Mean-field approximation for the two-orbital HOTSC Hamiltonian:
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CROSSOVER OF THE GROUND STATE IN THE WEAK-INTERACTION REGIME.
SPONTANEOUSLY BROKEN C4 SYMMETRY AND NONZERO MAGNETIZATION NEAR THE
CORNERS
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Figure 2: Left: Topological phase diagram of the 2D square-shaped topological insulator with extended s-wave
superconducting coupling without Coulomb interaction U = 0 (blue region with blue dashed-line border) and with on-site
Coulomb interaction U = 1 (blue and red region with black solid-line border). µ = µµhf is chemical potential measured from
the half-filling level. Right: Dependence of the first excitation energy on the intensity of the intraorbital Hubbard repulsion,
E1 (U), for different sizes of the square-shaped system. Inset: the energy of the first out-of-gap state as a function of U. The
system is taken at half filling (µhf = U/2). The other parameters are ∆0 = ∆ε = 0, tx = −ty = 2, t1 = tx/2, ∆1 = 0.5,
α = 1.5 [3].

Figure 3: Spatial distribution of the correlators ⟨nfA↑ ⟩ + ⟨nfB↓⟩ and ⟨nfA↓⟩ + ⟨nfB↑ ⟩ (electron occupancies in the ground
state) in the C4-symmetric phase (a,b) and in the phase with the spontaneously broken C4 symmetry (c,d).

EFFECT OF BOUNDARY SHAPE. TRIANGLE

Figure 4: Left: Spectrum and nA↓ + nB↑ quantity in the HOTSC with triangle-shaped 20 × 11 geometry. The system
experience two transitions fs → (0 + −) → (0 + +) with deviations of nA↓ + nB↑ appearing only at the corners, at which
topological corner excitations present. Right: b-e) The corner excitations spatial distribution at corresponding points on a) [3].

U → ∞ LIMIT. TOPOLOGICAL PHASE DIAGRAM AND DIRAC MASS CRITERION

In the limit U → ∞ Hamiltonian Heff is reduced to
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where lA = +1, lB = −1, tx = −ty = t , ασx = ασ, ασy = −iα.
The equation of motion for the operator X 0σ

fη (t) in the Heisenberg representation and for the Hamiltonian (4) is expressed
in the Hubbard-I approximation as
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The effective Hamiltonian in the Hubbard-I approximation can be pulled out of the equations of motion for the Green’s
functions, since, in general, Ĥeff = ω · Î − Ĝ−1. The wave functions of the edge states along x- and y-directions were
obtained for the continuum limit by expanding the effective Hamiltonian around the Dirac point (kx0, ky0) = (0, π) or (π, 0).
As a result, the Dirac mass ratio is
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where cx,y ≡ cos kx0,y0; ml = −µ+ η∆ε+ 2ηtl (cx − cy); τAB = tA mB − tB mA; tl = tHl , αl = 2αHl (as usual η = ±1
if l = A,B). The wave vector p0 is a new Dirac point shifted from (kx0, ky0) due to the strong many-body interactions.

Figure 5: Left: Phase diagram of HOTSC at U → ∞ in the variables ne (electron concentration per site), ∆ε (orbital
splitting). N is nodal phase, 1 is topological phase with Majorana corner modes. At solid lines the bulk spectrum of HOTSC
is gapless, at dashed lines the spectrum of the ribbon with (01) or (10) edges is gapless. The parameters are α = 3/4t ,
∆0 = 0, ∆1 = 0.5t . Inset: case U = 0. Right: Parameter area of existence of Majorana corner modes. [3].
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